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Hiding an image in cascaded Fresnel digital holograms

Shaogeng Deng (邓邓邓绍绍绍更更更), Liren Liu (刘刘刘立立立人人人), Haitao Lang (郎郎郎海海海涛涛涛),

Weiqing Pan (潘潘潘卫卫卫清清清), and Dong Zhao (赵赵赵 栋栋栋)

Laboratory for Optical Information, Shanghai Institute of Optics and Fine Mechanics,

Chinese Academy of Sciences, Shanghai 201800

Received October 27, 2005

A system of two separated computer-generated holograms termed cascaded Fresnel digital holography
(CFDH) is proposed and its application to hiding information is demonstrated by a computer simulation
experiment. The technique is that the reconstructed image is the result of the wave Fresnel diffraction
of two sub-holograms located at different distances from the imaging plane along the illuminating beam.
The two sub-holograms are generated by an iterative algorithm based on the projection onto convex sets.
In the application to the hiding of optical information, the information to be hidden is encoded into the
sub-hologram which is multiplied by the host image in the input plane, the other sub-hologram in the filter
plane is used for the deciphering key, the hidden image can be reconstructed in the imaging plane of the
CFDH setup.

OCIS codes: 090.1760, 100.2000, 070.4560, 050.1940, 260.1960.

Techniques of optical information security have been ex-
tensively studied in recent years since Refregier and
Javidi proposed the double-random phase encoding
technique[1]. Digital watermarking of two-dimensional
(2D) image or three-dimensional (3D) image by double-
random phase encoding was also successfully verified[2].
A technique of watermarking based on a modified joint-
transform correlator was proposed in Ref. [3], in which
the hidden information is revealed as a result of a spatial
correlation between two concealograms, its good perfor-
mance has been shown.

In this letter we propose an alternative approach with
an inherently simple system architecture, which may
offer a useful approach for a practical optical encryption
or security system (i.e. hiding a picture, watermarking or
product authenticity verification). It can be called cas-
caded Fresnel digital hologram (CFDH), which means the
reconstructed image is yielded by the Fresnel diffraction
of two sub-holograms located at different distances from
the imaging plane. Compared with that in Refs. [3,4], it
is an architecture without lenses, which minimizes the
hardware requirement and is easier to implement. The
optical setup of the system, shown in Fig. 1, is a cas-
caded Fresnel hologram optical setup with three planes:
the input plane P1 in which the input mask g1(x1, y1),
which is the product of a phase-only function h1(x1, y1)
and an intensity function A1(x1, y1), is displayed; the
filter plane P2 in which the filter mask H2(x2, y2),

Fig. 1. Optical setup of the cascaded Fresnel hologram sys-
tem.

another random phase-only function statistically inde-
pendent of h1(x1, y1), is displayed; and the imaging
plane P3 in which the camera should record the output
predefined image. The distances between the adjacent
planes are z1 and z2, which satisfy the Fresnel approx-
imation according to the size of the aperture. In the
application of the CFDH to the hiding of a picture, the
complex function g1(x1, y1) is the result of the phase-only
function h1(x1, y1) = exp[jφ(x1, y1)] multiplied by the
host image A1(x1, y1), g1(x1, y1) is Fresnel transformed
to the filter plane P2 and multiplied by the phase-only
function H2, and after the second Fresnel diffraction, an
image can be obtained in the imaging plane P3 which will
be modified so that it is close as much as possible to the
expected image by an iterative procedure.

Using Fresnel diffraction theory, we obtain the electric
field arriving at the filter plane P2 located at a distance
z1 from the input plane P1

G1(x2, y2) =
∫∫

A1(x1, y1)h1(x1, y1)

× jπ

λz1
[(x2 − x1)2 + (y2 − y1)2]dxdy, (1)

where λ represents the illumination wavelength,
g1(x1, y1) = A1(x1, y1)h1(x1, y1). For simplicity, we
rewrite Eq. (1) as

G1(x2, y2) = FrT{g1(x1, y1); z1}, (2)

where FrT represents the Fresnel transform, z1 denotes
the distance of the Fresnel diffraction. Then G1(x2, y2)
is multiplied by H2 = exp[iγ(x2, y2)] and totally Fresnel
transformed to the imaging plane, the electric field in the
plane P3 can be written as

c(x3, y3) = FrT{FrT{g1(x1, y1); z1}H2(x2, y2); z2}. (3)

While now the image in the imaging plane P3 is not
the expected image to be hidden, so the projections-
onto-constraint-sets (POCS) algorithm[5] is employed to
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adjust the phase function h1(x1, y1) of g1(x1, y1) in the
Fresnel diffraction procedure just as in Refs. [3—5], in
which the Fourier transforms are replaced by the Fres-
nel transforms. The POCS algorithm has been employed
in several areas of signal processing (with many other
designations), which is similar to the iterative Fourier
transform algorithm (IFTA). Now the system’s output
expected is

c(x3, y3) = I3(x3, y3) exp[jψ(x3, y3)], (4)

where I3(x3, y3) denotes the amplitude of the output im-
age and ψ(x3, y3) the phase of c(x3, y3). From Eq. (3)
the input function g1(x1, y1) is given by

g1(x1, y1) = IFrT
{

IFrT{c(x3, y3); z1}
H2(x2, y2)

; z2

}
, (5)

where IFrT is the inverse Fresnel operator. The POCS
algorithm based on Fresnel transformation shown in Fig.
2, starts with the complex function g1(x1, y1) which is
the result of the host image multiplied by a random-
phase function h1(x1, y1) = exp[jφ(x1, y1)]. The algo-
rithm consists of the following four steps: 1) The complex
function g1(x1, y1) is transformed by the cascaded Fresnel
diffraction, defined in Eq. (3), into the domain (x3, y3).
2) The obtained function c(x3, y3) is projected onto the
constraint set, which means the amplitude of the function
c(x3, y3) is replaced with the predefined image, here is the
expected image to be hidden. 3) And then back through
the inverse cascaded Fresnel diffraction defined by Eq.
(5) into the domain (x1, y1). 4) The function obtained
g′1(x1, y1) is projected onto the constraint sets in the do-
main (x1, y1), which means the modulus of g′1(x1, y1) is
replaced with the host image and the significant area is
limited in the initial area of the function g1(x1, y1), out
of the significant area is padded with zeros. Then a new
input function g1(x1, y1) is formed. The algorithm con-
tinues to circulate between two domains until the error
between the actual and the desired output functions is
no longer meaningfully reduced.

As we have mentioned above, the projection P1[·] on
the constraint set in the imaging plane is

P1[cn(x3, y3)] = A3(x3, y3) exp[jψ(x3, y3)], (6)

where A3(x3, y3) is a real positive function representing
the output image or the hidden image. In the input plane

Fig. 2. Block diagram of the main POCS algorithm used to
compute the phase function h1(x1, y1).

we recall that h1(x1, y1) should be the phase function of
the input function g1(x1, y1), and therefore the projection
P2[·] on the constraint set is

P2[g′1(x1, y1)] =

{
A1(x1, y1) exp[jφ(x1, y1)], if (x1, y1) ∈ W

0, otherwise , (7)

where φ(x1, y1) denotes the phase distribu-
tion of h1(x1, y1), that is, exp[jφ(x1, y1)] =
g′1(x1, y1)/|g′1(x1, y1)|, and W is a window function. Note
that H2(x2, y2) is chosen only once before the beginning
of the iterations. After H2(x2, y2) defined, it becomes
part of the Fresnel hologram kernel function and never
to be changed during the circulating process.

The average mean-square error en between the inten-
sity of the output function before and after the projec-
tion, used to evaluate the convergence of the algorithm
to the desired image in the nth iteration, is defined as

en =
1
M

∫∫ ∣∣∣|P1[cn(x3, y3)]|2 − |cn(x3, y3)|2
∣∣∣
2

dxdy, (8)

where M is the entire area of the imaging plane.
Computer simulations are performed to verify the va-

lidity of the technique proposed. As shown in Fig. 3(a),
the letter “R” in the central square is the image desired,
which comprised of 24 × 24 pixels in the imaging plane.
The input, filter and imaging planes are 128 × 128 pix-
els. The function g1(x1, y1) in the input plane is made
to cover only the central area of 60× 60 pixels, assumed
actual size is 4 × 4 (mm) and designated as the win-
dow W . Since the architecture is lensless, the beam
propagating through the system may be somewhat di-
vergent, and the field sizes of the significant planes must
be mismatched[6]. Hence z1 and z2 should be chosen
carefully to reduce the size mismatching according to the
propagation distance. Here we choose both z1 and z2

equal to 60 mm, satisfied with Nyquist sampling condi-
tion.

The Fresnel diffraction calculation is based on the frac-
tional Fourier transform algorithm[7]. Wavelength λ of
the input plane wave is 600 nm. The phase function
h1(x1, y1) of g1(x1, y1) obtained from the POCS-based it-
erative algorithm is shown in Fig. 3(b). The host image,
the amplitude of the function g1(x1, y1) is shown in Fig.
3(c). Only when the host image multiplied by the right
phase function h1(x1, y1), which is shown in Fig. 3(d),
is placed in the input plane and H2(x2, y2) in the filter
plane shown in Fig. 3(e), we can obtain the reconstructed
image, the image of the letter “R”, which is shown in Fig.
3(f). If the phase function h1(x1, y1) is wrong, the im-
age in the imaging plane is white noise not the expected
image, which is shown in Fig. 3(g). Figure 4 shows the
convergence of the mean square error with the number
of iterations to the minimum.

A key problem in computer holography is the realiza-
tion of a transparency that controls both the amplitude
and a phase of transmitted wave at each point in accord
with a computed complex function. Here we propose the
method of kinoform to implement for its excellent per-
formance. A kinoform is a fully transparent plate which
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Fig. 3. Result of the computer simulation experiment. (a) The image to be hidden; (b) the phase function h1(x1, y1) of
g1(x1, y1); (c) the host image; (d) the host image multiplied by the phase function h1(x1, y1); (e) the phase-only function
H2(x2, y2) generated by a mini POCS algorithm; (f) the reconstructed image in the imaging plane; (g) the reconstructed image
in the imaging plane with the wrong phase function h1(x1, y1) of the input function g1(x1, y1).

Fig. 4. Average mean-square error versus the number of iter-
ations.

does not degrade incident light intensity. In the ideal
case all the incident light illuminating the kinofrom can
be used to reconstruct a single image with the efficiency
of diffraction 100%[8].

When holograms are generated by computer the phase
is many times quantized, which means that the phase at
each point in the hologram cannot assume any one of a
continuous range of values (−π, π), but only those from a
discrete set, say N equally spaced values. Here we derive
the effects of phase quantization in CFDHs according to
the Goodmn and Silvestri theory[9,10] of phase quantiza-
tion and present simulated results of phase quantization
in CFDHs.

After phase quantization of g1(x1, y1) and H2(x2, y2),
we can obtain the reconstruction in the plane P3

ĉ(x3, y3) = FrT{Ĝ1(x2, y2)Ĥ2(x2, y2); z2}
= sinc2(1/N)I3(x3, y3) exp[jψ(x3, y3)]

+sinc2(1/N)FrT{
∑

m,m6=0

[(−1)m/(mN + 1)]G1m(x2, y2)H2(x2, y2); z2}

+sinc2(1/N)FrT{
∑

r,r 6=0

[(−1)r/(rN + 1)]G1(x2, y2)H2(x2, y2); z2}

+sinc2(1/N)FrT{
∑

m,m6=0

[(−1)m/(mN + 1)]G1m(x2, y2)
∑

r,r 6=0

[(−1)r/(rN + 1)]H2r(x2, y2); z2}, (9)

where G1m(x2, y2) = FrT{ |g1(x1, y1)| exp[i(Nm +
1)φ(x1, y1)]; z1}, G1(x2, y2) = FrT{g1(x1, y1); z1}, m is 0,
±1, ±2, · · · , ±∞, N is the number of phase quantization
levels, the sign ˆ means the phase quantization of com-
plex function. So the reconstructed function ĉ(x3, y3) of
CFDHs after phase quantization consists of a summation
of several different contributions, similar to that of Ref.
[10], the first term in the equation above, in the case
of m = 0, is the primary image, the other three terms
are “false images”. The concept of “false image” follows
that in Ref. [10], which is usually noise here. As the

number N of quantization levels increases, the strength
of the primary image increases, approaching that of the
expected function I3(x3, y3), while the strength of the
“false images” decreases. Next we will demonstrate the
effects of the phase quantization in CFDHs with previous
simulated procedure. The phases of two sub-holograms
are quantized into 3, 5 and 15 levels, the simulated results
are shown in Fig. 5. We can see that the reconstructed
image is degraded with the number N of phase quantiza-
tion decreasing. When N > 5, the reconstructed image
can be told. According to the nowadays technics level,
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Fig. 5. Reconstructed image after phase quantization with different numbers N of quantization. (a) N = 15; (b) N = 5; (c)
N = 3.

the CFDH is practical.
To summarize, we have introduced a CFDH technique,

which means the reconstructed image is produced by
two sub-holograms located at different positions along
the illuminating beam. The two sub-holograms are two
phase-random functions statistically independent on each
other, generated by a computer using the POCS algo-
rithm based on Fresnel transformation. The theory anal-
ysis of the Fresnel digital hologram is briefly given, to-
gether with the numerical simulation experiment of its
application to hiding an image or information, which
shows the method is practical. The kinoform is proposed
to implement CFDH, its analysis of phase quantization
is briefly given, which shows when the number N > 5
of phase quantization level the reconstructed image can
be told. The method proposed can be used for secu-
rity optical verification, watermarks, product authentic-
ity verification as well as hiding a halftone picture.

S. Deng’s e-mail address is dengshaogeng@hotmail.
com.
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